當前位置:
首頁 > 最新 > 愛因斯坦曾經也犯了一個大錯誤,他認為宇宙是靜止的

愛因斯坦曾經也犯了一個大錯誤,他認為宇宙是靜止的

宇宙的樣子

1916年,愛因斯坦發表了著名的「廣義相對論」,

應用這一理論,科學家們解決了恆星的演化問題。而宇宙是否是靜止的呢?對這一問題,連愛因斯坦也犯了一個大錯誤。他認為宇宙是靜止的,然而,1929年哈勃以不可辯駁的實驗,證明了宇宙不是靜止的,而是向外膨脹的。從這個意義上講,我們可以認為它是不存在的。因此,我們可以認為宇宙是有限的。

「宇宙到底是什麼樣子?」目前尚無定論。值得一提的是史蒂芬·霍金的觀點,比較讓人容易接受:宇宙有限而無界,只不過比地球多了幾維。比如,我們的地球就是有限而無界的。在地球上,無論從南極走到北極,還是從北極走到南極,你始終不可能找到地球的邊界,但你不能由此認為地球是無限的。實際上,我們都知道地球是有限的。地球如此,宇宙亦是如此。

怎麼理解宇宙比地球多了幾維呢?舉個例子:一個小球沿地面滾動並掉進了一個小洞中,在我們看來,小球是存在的,它還在洞裡面,因為我們人類是「三維」的。而對於一個螞蟻來說,它得出的結論就會是:小球已經不存在了!它消失了。

為什麼會得出這樣的結論呢?因為它生活在「二維」世界裡,對「三維」事件是無法清楚理解的。同樣的道理,我們人類生活在「三維」世界裡,對於比我們多幾維的宇宙,也是很難理解清楚的。這也正是對於「宇宙是什麼樣子」,這個問題無法解釋清楚的原因。

均勻的宇宙

長期以來,人們相信地球是宇宙的中心。哥白尼把這個觀點顛倒了過來,他認為太陽才是宇宙的中心。

地球和其他行星都圍繞著太陽轉動,恆星則鑲嵌在天球的最外層上。布魯諾進一步認為,宇宙沒有中心,恆星都是遙遠的太陽。

GIF/551K

無論是托勒密的地心說還是哥白尼的日心說,都認為宇宙是有限的。教會支持宇宙有限的論點。但是,布魯諾居然敢說宇宙是無限的,從而挑起了宇宙究竟是有限還是無限的長期論戰。這場論戰並沒有因為教會燒死布魯諾而停止下來。主張宇宙有限的人說:「宇宙怎麼可能是無限的呢?」這個問題確實不容易說清楚。主張宇宙無限的人則反問:「宇宙怎麼可能是有限的呢?」這個問題同樣也不好回答。

隨著天文觀測技術的發展,人們看到,確實像布魯諾所說的那樣,恆星是遙遠的太陽。而且,銀河是由無數太陽系組成的巨大星系,但這樣大的星團足有無數個,它們是均勻分布著的。

由於光的傳播需要時間,我們看到的距離我們一億光年的星系,實際上是那個星系一億年以前的樣子。所以,我們用望遠鏡看到的,不僅是空間距離遙遠的星系,而且是它們的過去。從望遠鏡看來,不管多遠距離的星系團,都均勻各向同性地分布著。因而我們可以認為,宇觀尺度上(105光年以上)物質分布的均勻狀態,不是現在才有的,而是早已如此。

於是,天體物理學家提出一條規律,即所謂宇宙學原理。這條原理說,在宇觀尺度上,三維空間在任何時刻都是均勻各向同性的。現在看來,宇宙學原理是對的。所有的星系都差不多,都有相似的演化歷程。因此我們用望遠鏡看到的遙遠星系,既是它們過去的形象,也是我們星系過去的形象。望遠鏡不僅在看空間,而且在看時間,在看我們的歷史。

有限而無邊的宇宙

愛因斯坦發表廣義相對論後,考慮到萬有引力比電磁力弱得多,不可能在分子、原子、原子核等研究中產生重要的影響,因而他把注意力放在了天體物理上。他認為,宇宙才是廣義相對論大有用武之地的領域。

愛因斯坦1916年發表廣義相對論,1917年就提出一個建立在廣義相對論基礎上的宇宙模型。這是一個人們完全意想不到的模型。在這個模型中,宇宙的三維空間是有限無邊的,而且不隨時間變化。以往人們認為,有限就是有邊,無限就是無邊。愛因斯坦把有限和有邊這兩個概念區分開來。

一個長方形的桌面,有確定的長和寬,也有確定的面積,因而大小是有限的。同時它有明顯的四條邊,因此是有邊的。如果有一個小甲蟲在它上面爬,無論朝哪個方向爬,都會很快到達桌面的邊緣。所以桌面是有限有邊的二維空間。如果桌面向四面八方無限伸展,成為歐氏幾何中的平面,那麼,這個歐氏平面是無限無邊的二維空間。

我們再看一個籃球的表面,如果籃球的半徑為r,那麼球面的面積是4πr2,大小是有限的。但是,這個二維球面是無邊的。假如有一個小甲蟲在它上面爬,永遠也不會走到盡頭。所以,籃球面是一個有限無邊的二維空間。

按照宇宙學原理,在宇觀尺度上,三維空間是均勻各向同性的。愛因斯坦認為,這樣的三維空間必定是常曲率空間,也就是說空間各點的彎曲程度應該相同,即應該有相同的曲率。由於是物質存在的,四維時空應該是彎曲的。三維空間也應是彎的而不應是平的。愛因斯坦覺得,這樣的宇宙很可能是三維超球面。三維超球面不是通常的球體,而是二維球面的推廣。通常的球體是有限有邊的,體積是πr3,它的邊就是二維球面。三維超球面是有限無邊的,生活在其中的三維生物(例如我們人類就是有長、寬、高的三維生物),無論朝哪個方面前進均碰不到邊。假如它一直朝北走,最終會從南邊走回來。

宇宙學原理還認為,三維空間的均勻各向同性是在任何時刻都保持的。愛因斯坦覺得其中最簡單的情況就是靜態宇宙,也就是說,不隨時間變化的宇宙。這樣的宇宙只要在某一時刻均勻各向同性,就永遠保持均勻各向同性。

愛因斯坦試圖在三維空間均勻各向同性、且不隨時間變化的假定下,求解廣義相對論的場方程。場方程非常複雜,而且需要知道初始條件(宇宙最初的情況)和邊界條件(宇宙邊緣處的情況)才能求解。他設想宇宙是有限無邊的,而且是靜態的。再加上對稱性的限制(要求三維空間均勻各向同性),場方程就變得好解多了。但還是得不出結果。反覆思考後,愛因斯坦終於明白求不出解的原因:廣義相對論可以看作萬有引力定律的推廣,只包含「吸引效應」不包含「排斥效應」。而維持一個不隨時間變化的宇宙,必須有排斥效應與吸引效應相平衡才行。這就是說,從廣義相對論場方程不可能得出「靜態」宇宙。要想得出靜態宇宙,必須修改場方程。於是他在方程中增加了一個「排斥」項,叫做宇宙項。這樣,愛因斯坦終於計算出一個靜態的、均勻各向同性的、有限無邊的宇宙模型。一時間大家非常興奮,科學終於告訴我們,宇宙是不隨時間變化的,是有限無邊的。看來,關於宇宙有限還是無限的爭論似乎可以畫上一個句號了。

膨脹或脈動的宇宙

幾年之後,一個名不見經傳的前蘇聯數學家弗利德曼,

應用不加宇宙項的場方程,得到一個膨脹的、或脈動的宇宙模型。弗利德曼的宇宙在三維空間上也是均勻的、各向同性的,但是,它不是靜態的。這個宇宙模型隨時間變化,分三種情況。第一種情況,三維空間的曲率是負的;第二種情況,三維空間的曲率為零,也就是說,三維空間是平直的;第三種情況,三維空間的曲率是正的。前兩種情況,宇宙不停地膨脹;第三種情況,宇宙先膨脹,達到一個極大值後開始收縮,然後再膨脹,再收縮……因此第三種宇宙是脈動的。弗利德曼的宇宙模型最初發表在一個不太著名的雜誌上。後來,西歐一些數學家物理學家得到類似的宇宙模型。愛因斯坦得知這類膨脹或脈動的宇宙模型後,十分興奮。他認為自己的模型不好,應該放棄,弗利德曼模型才是正確的宇宙模型。

同時,愛因斯坦宣稱,自己在廣義相對論的場方程上加宇宙項是錯誤的,場方程不應該含有宇宙項,而應該是原來的老樣子。但是,宇宙項就像「天方夜譚」中從瓶子里放出的魔鬼,再也收不回去了。後人沒有理睬愛因斯坦的意見,繼續討論宇宙項的意義。今天,廣義相對論的場方程有兩種,一種不含宇宙項,另一種含宇宙項,都在專家們的應用和研究中。

早在1910年前後,天文學家就發現大多數星系的光譜有紅移現象,個別星系的光譜還有紫移現象。這些現象可以用多譜勒效應來解釋。遠離我們而去的光源發出的光,我們收到時會感到其頻率降低,波長變長,並出現光譜紅移的現象,即光譜會向長波方向移動的現象。反之,向著我們迎面而來的光源,光譜線會向短波方向移動,出現紫移現象。這種現象與聲音的多普勒效應相似。許多人都有過這樣的感受:迎面而來的火車其鳴叫聲特別尖銳刺耳,遠離我們而去的火車其鳴叫聲則明顯遲鈍。這就是聲波的多普勒效應,迎面而來的聲源發出的聲波,我們感到其頻率升高,遠離我們而去的聲源發出的聲波,我們則感到其頻率降低。

如果認為星系的紅移、紫移是多普勒效應,那麼大多數星系都在遠離我們,只有個別星系向我們靠近。隨之進行的研究發現,那些個別向我們靠近的紫移星系,都在我們自己的本星系團中(我們銀河系所在的星系團稱本星系團)。本星系團中的星系,多數紅移,少數紫移,而其他星系團中的星系就全是紅移了。

1929年,美國天文學家哈勃總結了當時的一些觀測數據,提出一條經驗規律,河外星系(即我們銀河系之外的其他銀河系)的紅移大小正比於它們離開我們銀河系中心的距離。由於多普勒效應的紅移量與光源的速度成正比,所以,上述定律又表述為:河外星系的退行速度與它們離我們的距離成正比:

V=HD

式中V是河外星系的退行速度,D是它們到我們銀河系中心的距離。這個定律稱為哈勃定律,比例常數H稱為哈勃常數。按照哈勃定律,所有的河外星系都在遠離我們,而且,離我們越遠的河外星系,逃離得越快。

哈勃定律反映的規律與宇宙膨脹理論正好相符。個別星系的紫移可以這樣解釋,本星系團內部各星系要圍繞它們的共同重心轉動,因此總會有少數星系在一定時間內向我們的銀河系靠近。這種紫移現象與整體的宇宙膨脹無關。

哈勃定律大大支持了弗利德曼的宇宙模型。不過,如果查看一下當年哈勃得出定律時所用的數據圖,人們會感到驚訝。在距離與紅移量的關係圖中,哈勃標出的點並不集中在一條直線附近,而是比較分散的。哈勃怎麼敢於斷定這些點應該描繪成一條直線呢?一個可能的答案是,哈勃抓住了規律的本質,拋開了細節。另一個可能是,哈勃已經知道當時的宇宙膨脹理論,所以大膽認為自己的觀測與該理論一致。以後的觀測數據越來越精,數據圖中的點也越來越集中在直線附近,哈勃定律終於被大量實驗觀測所確認。

宇宙有限還是無限

現在,我們又回到前面的話題,宇宙到底有限還是無限?有邊還是無邊?對此,我們從廣義相對論、大爆炸宇宙模型和天文觀測的角度來探討這一問題。

滿足宇宙學原理(三維空間均勻各向同性)的宇宙,肯定是無邊的。但是否有限,要分三種情況來討論。

如果三維空間的曲率是正的,那麼宇宙將是有限無邊的。不過,它不同於愛因斯坦的有限無邊的靜態宇宙,這個宇宙是動態的,將隨時間變化,不斷地脈動,不可能靜止。這個宇宙從空間體積無限小的奇點開始爆炸、膨脹。此奇點的物質密度無限大、溫度無限高、空間曲率無限大、四維時空曲率也無限大。在膨脹過程中宇宙的溫度逐漸降低,物質密度、空間曲率和時空曲率都逐漸減小。體積膨脹到一個最大值後,將轉為收縮。在收縮過程中,溫度重新升高、物質密度、空間曲率和時空曲率逐漸增大,最後到達一個新奇點。許多人認為,這個宇宙在到達新奇點之後將重新開始膨脹。顯然,這個宇宙的體積是有限的,這是一個脈動的、有限無邊的宇宙。

如果三維空間的曲率為零,也就是說,三維空間是平直的(宇宙中有物質存在,四維時空是彎曲的),那麼這個宇宙一開始就具有無限大的三維體積,這個初始的無限大三維體積是奇異的(即「無窮大」的奇點)。大爆炸就從這個「無窮大」奇點開始,爆炸不是發生在初始三維空間中的某一點,而是發生在初始三維空間的每一點。即大爆炸發生在整個「無窮大」奇點上。這個「無窮大」奇點,溫度無限高、密度無限大、時空曲率也無限大(三維空間曲率為零)。爆炸發生後,整個「奇點」開始膨脹,成為正常的非奇異時空,溫度、密度和時空曲率都逐漸降低。這個過程將永遠地進行下去。這是一種不大容易理解的圖像:一個無窮大的體積在不斷地膨脹。顯然,這種宇宙是無限的,它是一個無限無邊的宇宙。

三維空間曲率為負的情況與三維空間曲率為零的情況比較相似。宇宙一開始就有無窮大的三維體積,這個初始體積也是奇異的,即三維「無窮大」奇點。它的溫度、密度無限高,三維、四維曲率都無限大。大爆炸發生在整個「奇點」上,爆炸後,無限大的三維體積將永遠膨脹下去,溫度、密度和曲率都將逐漸降下來。這也是一個無限的宇宙,確切地說是無限無邊的宇宙。

那麼,我們的宇宙到底屬於上述三種情況的哪一種呢?我們宇宙的空間曲率到底為正,為負,還是為零呢?這個問題要由觀測來決定。

廣義相對論的研究表明,宇宙中的物質存在一個臨界密度ρc,大約是每立方米三個核子(質子或中子)。如果我們宇宙中物質的密度ρ大於ρc,則三維空間曲率為正,宇宙是有限無邊的;如果ρ小於ρc,則三維空間曲率為負,宇宙也是無限無邊的。因此,觀測宇宙中物質的平均密度,可以判定我們的宇宙究竟屬於哪一種,究竟有限還是無限。

此外,還有另一個判據,那就是減速因子。河外星系的紅移,反映的膨脹是減速膨脹,也就是說,河外星系遠離我們的速度在不斷減小。從減速的快慢,也可以判定宇宙的類型。如果減速因子q大於,三維空間曲率將是正的,宇宙膨脹到一定程度將收縮;如果q等於,三維空間曲率為零,宇宙將永遠膨脹下去;如果q小於,三維空間曲率將是負的,宇宙也將永遠膨脹下去。


喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 宇宙百科探秘 的精彩文章:

是什麼力量隱藏在巫師星雲之內?強大的引力形成了恆星
假如我們居住在一個變幻莫測的星球上,我們就不可能理解事物
令人著迷的「瑪雅星」瑪雅人認為太陽系中應該還有一顆未知行星
我們雖然看不到它們的世界,它們卻與我們「親密接觸」
捕捉大爆炸後約20億年兩個遙遠星系的伽馬射線爆的餘暉

TAG:宇宙百科探秘 |