關注雙酚A等內分泌干擾物:介導免疫調節代謝機制探討
學術前沿
研究表明,內分泌干擾物(EDCs)可能通過介導免疫系統來影響代謝健康,該領域的研究可能為未來代謝性疾病的預防和治療提供新的思路。本期將分享相關內容。
什麼是內分泌干擾物(EDCs)?
代謝紊亂疾病如2型糖尿病和肥胖症的發病率逐年增加1, 2。造成這一現象的原因是多方面的。除卻已知的營養過剩和不良生活方式這兩個主要因素,暴露於環境中的各種化學物質可能也是一個重要原因3-7。由於這些外源性化學物質可從多個方面破壞內分泌激素的正常作用,因此也被稱為內分泌干擾物(EDCs)8,9。
EDCs種類多且複雜,按其來源可分為天然和人工合成化合物兩大類。它們會增加糖尿病和肥胖的風險,尤以雙酚A(BPA)10和鄰苯二甲酸酯11這兩種物質為甚。
研究表明,ECDs可能通過介導免疫系統來影響代謝健康12,13。更好地理解EDCs的免疫調節作用,將有助於改善代謝功能,並有助於減輕由生活環境所致的糖尿病和肥胖的負擔。
免疫系統如何調節代謝健康?
代謝健康的免疫調節近年來受到了廣泛關注。固有免疫系統(自然殺傷細胞、肥大細胞、嗜酸性粒細胞、嗜鹼性粒細胞和巨噬細胞的吞噬細胞,如樹突狀細胞和中性粒細胞)和適應性免疫應答系統(CD8+和CD4+T淋巴細胞,以及B淋巴細胞)都在代謝疾病進展中發揮關鍵影響。
在脂肪組織中,這兩套免疫系統之間的交互作用已被廣泛探討14。肥胖時肥大的脂肪細胞產生趨化性脂肪細胞因子和趨化因子,如單核細胞趨化蛋白-1(MCP-1)和白三烯B4(LTB4)。此外,脂肪組織會釋放促炎性細胞因子,如腫瘤壞死因子α(TNF-α)、γ-干擾素(IFN-γ)和白細胞介素17(IL-17),促進脂肪組織巨噬細胞向促炎性M1巨噬細胞轉化15。脂肪細胞、固有免疫系統和適應性免疫系統的交互作用造就了脂肪組織的促炎症環境。
與之類似,在胰島素抵抗和2型糖尿病中,代謝敏感組織(胰腺、肝臟、骨骼肌、腸和血管)中固有免疫和適應性免疫的交互作用,打破了促炎和抗炎的平衡,最終干擾了代謝健康16。
與代謝紊亂相關的細胞內促炎信號通路共有三條,分別是核因子kB/kB激酶抑製劑通路(NFκB)/ IKκB)、c-Jun氨基末端激酶/激活蛋白-1通路(JNK/AP1),以及炎性小體通路17, 18(圖2)。這三條通路經常交疊作用。促炎信號通路一旦激活,則會增加胰島素受體底物1/2(IRS1 / 2)磷酸化以及炎症基因的轉錄,從而增加胰島素抵抗17, 18(圖1)。
與促炎信號通路相反,由G蛋白偶聯受體120(GPR120)、雌激素受體α(ERα)和白介素10(IL-10)激活的抗炎信號通路則可抑制胰島素抵抗17-19(圖1)。促炎和抗炎因子水平的平衡決定著炎症的大小量級,並對維持代謝平衡起著至關重要的作用。
圖1.胰島素抵抗的炎症相關信號通路
EDCs對免疫系統的影響機制
EDCs對免疫系統的影響機制可能是多方面的。其中已發現對維持代謝平衡有重要作用的機制有以下四種(圖2)。
受體。EDCs通過與受體結合來影響免疫系統,如雌激素受體(ERS)、雌激素相關受體(ERR)、過氧化物酶體增殖物激活受體γ(PPARγ)、Toll樣受體(TLR)和NOD樣受體(NLRs)20-23。
腸道菌群。腸道菌群的個體差異很大,不同的腸道菌群會帶來不同的EDCs代謝24。綜合以往的研究,EDC會損傷正常的腸道菌群並對代謝健康帶來不利的影響25-27。
氧化應激。體內體外研究都顯示EDCs可以增加腎臟、胰腺和肝臟的內質網應激28-31。線粒體功能障礙和內質網應激與氧化應激增強和代謝紊亂相關。
晝夜節律破壞。晝夜節律紊亂會損害體內的代謝平衡,同樣,生活方式的因素,如睡眠/喚醒模式、輪班工作、時差等導致的晝夜節律紊亂,均會改變免疫系統功能。最近的研究表明,EDCs可以擾亂晝夜節律性32-34。
圖2. EDC作用於免疫系統從而導致代謝紊亂的可能路徑
免疫功能障礙增加了糖尿病和肥胖等各種代謝紊亂的風險,而無處不在的EDCs又使風險進一步加劇。在未來針對EDC領域的研究中,應把EDC對免疫系統的作用考慮在內,從而找到新的針對環境引起的代謝疾病的預防和治療方法。
參考文獻
1. Mathers CD & Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11):e442.
2. Yang W, et al. (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 36(4): 1033-1046.
3. Newbold RR, Padilla-Banks E, Jefferson WN, & Heindel JJ (2008) Effects of endocrine disruptors on obesity. Int J Androl. 31(2):201-208.
4. Lang IA, et al. (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 300(11):1303-1310.
5. Alonso-Magdalena P, Quesada I, & Nadal A (2015) Prenatal Exposure to BPA and Offspring Outcomes: The Diabesogenic Behavior of BPA. Dose Response. 13(2): 1559325815590395.
6. Jasarevic E, et al. (2011) Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc Natl Acad Sci U S A. 108(28):11715-11720.
7. Gore AC, et al. (2015) EDC-2: The Endocrine Society"s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 36(6):E1-E150.
8. Kavlock RJ, et al. (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 104(Suppl 4):715-740.
9. Zoeller RT, et al. (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology. 153(9):4097-4110.
10. Stahlhut RW, Welshons WV, & Swan SH (2009) Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 117(5):784-789.
11. Sun Q, et al. (2014) Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses" Health Study (NHS) and NHSII cohorts. Environ Health Perspect. 122(6):616-623.
12. Wang J, Lv X, & Du Y (2010) Inflammatory response and insulin signaling alteration induced by PCB77. J Environ Sci (China) 22(7):1086-1090.
13. Ben-Jonathan N, Hugo ER, & Brandebourg TD (2009) Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol Cell Endocrinol. 304(1-2):49-54.
14. Brestoff JR & Artis D (2015) Immune regulation of metabolic homeostasis in health and disease. Cell. 161(1):146-160.
15. Sell H, Habich C, & Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 8(12):709-716.
16. Bansal A, Henao-Mejia , Simmons RA (2018) Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology. 159(1):32-45.
17. Lackey DE & Olefsky JM (2016) Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 12(1):15-28.
18. Osborn O & Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18(3):363-374.
19. Miller CN, Brown LM, Rayalam S, Della-Fera MA, & Baile CA (2012) Estrogens, inflammation and obesity: an overview. Front. Biol 7(1):40.
20. Couleau N, et al. (2015) Effects of Endocrine Disruptor Compounds, Alone or in Combination, on Human Macrophage-Like THP-1 Cell Response. PLoS One. 10(7):e0131428.
21. Janesick A & Blumberg B (2011) Minireview: PPARgamma as the target ofobesogens. J Steroid Biochem Mol Biol. 127(1-2):4-8.
22. Xu H, Yang M, Qiu W, Pan C, & Wu M (2013) The impact of endocrine-disrupting chemicals on oxidative stress and innate immune response in zebrafish embryos. Environ Toxicol Chem. 32(8):1793-1799.
23. Liao SL, et al. (2016) Prenatal exposure to bisphenol-A is associated with Toll-like receptor-induced cytokine suppression in neonates. Pediatr Res. 79(3):438-444.
24. Arumugam M, et al. (2011) Enterotypes of the human gut microbiome. Nature. 473(7346):174-180.
25. Lai KP, Chung YT, Li R, Wan HT, & Wong CK (2016) Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ Pollut. 218:923-930.
26. Hu J, et al. (2016) Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 4(1):26.
27. Choi JJ, et al. (2013) Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 121(6):725-730.
28. Peropadre A, Fernandez Freire P, Perez Martin JM, Herrero O, & Hazen MJ (2015) Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure. Toxicol In Vitro. 30(1 Pt B):281-287.
29. Lu TH, et al. (2011) Arsenic induces pancreatic beta-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett. 201(1):15-26.
30. Sun X, et al. (2015) Di(2-ethylhexyl) phthalate-induced apoptosis in rat INS-1 cells is dependent on activation of endoplasmic reticulum stress and suppression of antioxidant protection. J Cell Mol Med. 19(3):581-594.
31. Asahi J, et al. (2010) Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci. 87(13-14):431-438.
32. Beydoun HA, Beydoun MA, Jeng HA, Zonderman AB, & Eid SM (2016) Bisphenol-A and Sleep Adequacy among Adults in the National Health and Nutrition Examination Surveys. Sleep. 39(2):467-476.
33. Regnier SM, et al. (2015) Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice. Endocrinology. 156(3):896-910.
34. Labaronne E, et al. (2017) Low-dose pollutant mixture triggers metabolic disturbances in female mice leading to common and specific features as compared to a high-fat diet. J Nutr Biochem. 45:83-93.
《糖尿病學術前沿》介紹:
諾和諾德醫學事務團隊長期關注內分泌領域最新進展,共同監測20餘個糖尿病領域頂級專業雜誌及網站,精選其中的熱點文章,總結提煉製作而成《糖尿病學術前沿》項目,旨在持續推進內分泌領域的前沿學術信息溝通。
歡迎大家關注醫學信息微信公共平台獲得前沿的學術信息:


TAG:諾和諾德醫學資訊 |