當前位置:
首頁 > 知識 > 【源碼分享】機器學習之Python支持向量機

【源碼分享】機器學習之Python支持向量機


微信公眾號


關鍵字全網搜索最新排名


【機器學習演算法】

排名第一


【機器學習】

排名第一


【Python】

排名第三


【演算法】

排名第四




前言



在寫代碼前,先簡單的過一下SVM的基本原理,如下:



SVM(support vector machine)簡單的說是一個分類器,並且是二類分類器。




  • Vector:通俗說就是點,或是數據。



  • Machine:也就是classifier,也就是分類器。




SVM作為傳統機器學習的一個非常重要的分類演算法,它是一種通用的前饋網路類型,最早是由Vladimir N.Vapnik 和 Alexey Ya.Chervonenkis在1963年提出,目前的版本(soft margin)是Corinna Cortes 和 Vapnik在1993年提出,1995年發表。深度學習(2012)出現之前,SVM被認為是機器學習中近十幾年最成功表現最好的演算法。




????

給定訓練樣本,支持向量機建立一個超平面作為決策曲面,使得正例和反例的隔離邊界最大化。


決策曲面的初步理解可以參考如下過程,(來自:http://blog.csdn.net/jcjx0315/article/details/61929439)

???



1)

如下圖想像紅色和藍色的球為球台上的撞球,我們首先目的是找到一條曲線將藍色和紅色的球分開,於是我們得到一條黑色的曲線。





圖一.


2) 為了使黑色的曲線離

任意

的藍球和紅球距離(也就是我們後面要提到的margin)最大化,我們需要找到一條最優的曲線。如下圖,



圖二.


3) 想像一下如果這些球不是在球桌上,而是被拋向了空中,我們仍然需要將紅色球和藍色球分開,這時就需要一個曲面,而且我們需要這個曲面仍然滿足跟所有任意紅球和藍球的間距的最大化。需要找到的這個曲面,就是我們後面詳細了解的最優超平面。



 


4) 離這個曲面最近的紅色球和藍色球就是Support Vector。

詳細的原理請看之前的文章:




  • 機器學習(19)之支持向量回歸機



  • 機器學習(18)之支持向量機原理(三)線性不可分支持向量機與核函數



  • 機器學習(16)之支持向量機原理(二)軟間隔最大化



  • 機器學習(15)之支持向量機原理(一)線性支持向量機



  • 模糊最小二乘支持向量機



  • ......


更多文章點擊站內搜索鏈接:

http://urlort.cn/4yybf9







python源碼:


原文鏈接:https://www.cnblogs.com/buzhizhitong/p/6089070.html




# -*- coding: utf-8 -*-


"""


Created on Tue Nov 22 11:24:22 2016




@author: Administrator


"""




# Mathieu Blondel, September 2010


# License: BSD 3 clause




import numpy as np


from numpy import linalg


import cvxopt


import cvxopt.solvers




def linear_kernel(x1, x2):


    return np.dot(x1, x2)




def polynomial_kernel(x, y, p=3):


    return (1 + np.dot(x, y)) ** p




def gaussian_kernel(x, y, sigma=5.0):


    return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2)))




class SVM(object):




    def __init__(self, kernel=linear_kernel, C=None):


        self.kernel = kernel


        self.C = C


        if self.C is not None: self.C = float(self.C)




    def fit(self, X, y):


        n_samples, n_features = X.shape




        # Gram matrix


        K = np.zeros((n_samples, n_samples))


        for i in range(n_samples):


            for j in range(n_samples):


                K[i,j] = self.kernel(X[i], X[j])




        P = cvxopt.matrix(np.outer(y,y) * K)


        q = cvxopt.matrix(np.ones(n_samples) * -1)


        A = cvxopt.matrix(y, (1,n_samples))


        b = cvxopt.matrix(0.0)




        if self.C is None:


            G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))


            h = cvxopt.matrix(np.zeros(n_samples))


        else:


            tmp1 = np.diag(np.ones(n_samples) * -1)


            tmp2 = np.identity(n_samples)


            G = cvxopt.matrix(np.vstack((tmp1, tmp2)))


            tmp1 = np.zeros(n_samples)


            tmp2 = np.ones(n_samples) * self.C


            h = cvxopt.matrix(np.hstack((tmp1, tmp2)))




        # solve QP problem


        solution = cvxopt.solvers.qp(P, q, G, h, A, b)


        # Lagrange multipliers


        """


         數組的flatten和ravel方法將數組變為一個一維向量(鋪平數組)。


         flatten方法總是返回一個拷貝後的副本,


         而ravel方法只有當有必要時才返回一個拷貝後的副本(所以該方法要快得多,尤其是在大數組上進行操作時)


       """


        a = np.ravel(solution["x"])


        # Support vectors have non zero lagrange multipliers


        """


        這裡a>1e-5就將其視為非零


        """


        sv = a > 1e-5     # return a list with bool values


        ind = np.arange(len(a))[sv]  # sv"s index


        self.a = a[sv]


        self.sv = X[sv]  # sv"s data


        self.sv_y = y[sv]  # sv"s labels


        print("%d support vectors out of %d points" % (len(self.a), n_samples))




        # Intercept


        """


        這裡相當於對所有的支持向量求得的b取平均值


        """


        self.b = 0


        for n in range(len(self.a)):


            self.b += self.sv_y[n]


            self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv])


        self.b /= len(self.a)




        # Weight vector


        if self.kernel == linear_kernel:


            self.w = np.zeros(n_features)


            for n in range(len(self.a)):


                # linear_kernel相當於在原空間,故計算w不用映射到feature space


                self.w += self.a[n] * self.sv_y[n] * self.sv[n]


        else:


            self.w = None




    def project(self, X):


        # w有值,即kernel function 是 linear_kernel,直接計算即可


        if self.w is not None:


            return np.dot(X, self.w) + self.b


        # w is None --> 不是linear_kernel,w要重新計算


        # 這裡沒有去計算新的w(非線性情況不用計算w),直接用kernel matrix計算預測結果


        else:


            y_predict = np.zeros(len(X))


            for i in range(len(X)):


                s = 0


                for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):


                    s += a * sv_y * self.kernel(X[i], sv)


                y_predict[i] = s


            return y_predict + self.b




    def predict(self, X):


        return np.sign(self.project(X))




if __name__ == "__main__":


    import pylab as pl




    def gen_lin_separable_data():


        # generate training data in the 2-d case


        mean1 = np.array([0, 2])


        mean2 = np.array([2, 0])


        cov = np.array([[0.8, 0.6], [0.6, 0.8]])


        X1 = np.random.multivariate_normal(mean1, cov, 100)


        y1 = np.ones(len(X1))


        X2 = np.random.multivariate_normal(mean2, cov, 100)


        y2 = np.ones(len(X2)) * -1


        return X1, y1, X2, y2




    def gen_non_lin_separable_data():


        mean1 = [-1, 2]


        mean2 = [1, -1]


        mean3 = [4, -4]


        mean4 = [-4, 4]


        cov = [[1.0,0.8], [0.8, 1.0]]


        X1 = np.random.multivariate_normal(mean1, cov, 50)


        X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))


        y1 = np.ones(len(X1))


        X2 = np.random.multivariate_normal(mean2, cov, 50)


        X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))


        y2 = np.ones(len(X2)) * -1


        return X1, y1, X2, y2




    def gen_lin_separable_overlap_data():


        # generate training data in the 2-d case


        mean1 = np.array([0, 2])


        mean2 = np.array([2, 0])


        cov = np.array([[1.5, 1.0], [1.0, 1.5]])


        X1 = np.random.multivariate_normal(mean1, cov, 100)


        y1 = np.ones(len(X1))


        X2 = np.random.multivariate_normal(mean2, cov, 100)


        y2 = np.ones(len(X2)) * -1


        return X1, y1, X2, y2




    def split_train(X1, y1, X2, y2):


        X1_train = X1[:90]


        y1_train = y1[:90]


        X2_train = X2[:90]


        y2_train = y2[:90]


        X_train = np.vstack((X1_train, X2_train))


        y_train = np.hstack((y1_train, y2_train))


        return X_train, y_train




    def split_test(X1, y1, X2, y2):


        X1_test = X1[90:]


        y1_test = y1[90:]


        X2_test = X2[90:]


        y2_test = y2[90:]


        X_test = np.vstack((X1_test, X2_test))


        y_test = np.hstack((y1_test, y2_test))


        return X_test, y_test




    # 僅僅在Linears使用此函數作圖,即w存在時


    def plot_margin(X1_train, X2_train, clf):


        def f(x, w, b, c=0):


            # given x, return y such that [x,y] in on the line


            # w.x + b = c


            return (-w[0] * x - b + c) / w[1]




        pl.plot(X1_train[:,0], X1_train[:,1], "ro")


        pl.plot(X2_train[:,0], X2_train[:,1], "bo")


        pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")




        # w.x + b = 0


        a0 = -4; a1 = f(a0, clf.w, clf.b)


        b0 = 4; b1 = f(b0, clf.w, clf.b)


        pl.plot([a0,b0], [a1,b1], "k")




        # w.x + b = 1


        a0 = -4; a1 = f(a0, clf.w, clf.b, 1)


        b0 = 4; b1 = f(b0, clf.w, clf.b, 1)


        pl.plot([a0,b0], [a1,b1], "k--")




        # w.x + b = -1


        a0 = -4; a1 = f(a0, clf.w, clf.b, -1)


        b0 = 4; b1 = f(b0, clf.w, clf.b, -1)


        pl.plot([a0,b0], [a1,b1], "k--")




        pl.axis("tight")


        pl.show()




    def plot_contour(X1_train, X2_train, clf):


        # 作training sample數據點的圖


        pl.plot(X1_train[:,0], X1_train[:,1], "ro")


        pl.plot(X2_train[:,0], X2_train[:,1], "bo")


        # 做support vectors 的圖


        pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")


        X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50))


        X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])


        Z = clf.project(X).reshape(X1.shape)


        # pl.contour做等值線圖


        pl.contour(X1, X2, Z, [0.0], colors="k", linewidths=1, origin="lower")


        pl.contour(X1, X2, Z + 1, [0.0], colors="grey", linewidths=1, origin="lower")


        pl.contour(X1, X2, Z - 1, [0.0], colors="grey", linewidths=1, origin="lower")




        pl.axis("tight")


        pl.show()




    def test_linear():


        X1, y1, X2, y2 = gen_lin_separable_data()


        X_train, y_train = split_train(X1, y1, X2, y2)


        X_test, y_test = split_test(X1, y1, X2, y2)




        clf = SVM()


        clf.fit(X_train, y_train)




        y_predict = clf.predict(X_test)


        correct = np.sum(y_predict == y_test)


        print("%d out of %d predictions correct" % (correct, len(y_predict)))




        plot_margin(X_train[y_train==1], X_train[y_train==-1], clf)




    def test_non_linear():


        X1, y1, X2, y2 = gen_non_lin_separable_data()


        X_train, y_train = split_train(X1, y1, X2, y2)


        X_test, y_test = split_test(X1, y1, X2, y2)




        clf = SVM(gaussian_kernel)


        clf.fit(X_train, y_train)




        y_predict = clf.predict(X_test)


        correct = np.sum(y_predict == y_test)


        print("%d out of %d predictions correct" % (correct, len(y_predict)))




        plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)




    def test_soft():


        X1, y1, X2, y2 = gen_lin_separable_overlap_data()


        X_train, y_train = split_train(X1, y1, X2, y2)


        X_test, y_test = split_test(X1, y1, X2, y2)




        clf = SVM(C=0.1)


        clf.fit(X_train, y_train)




        y_predict = clf.predict(X_test)


        correct = np.sum(y_predict == y_test)


        print("%d out of %d predictions correct" % (correct, len(y_predict)))




        plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)




    # test_soft()


    # test_linear()


    test_non_linear()




效果如下:







近期熱文



機器學習匯總,珍藏版!


10個Python面試常問的問題


大福利!Google機器學習零基礎在線課程發布,免費!有中文版!


長文 | LSTM和循環神經網路基礎教程(PDF下載)



加入微信機器學習交流


請添加微信:guodongwe1991


備註姓名-單位-研究方向





廣告、商業合作


請添加微信:guodongwe1991


(備註:商務合作)






喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!

TAG: |