英偉達發布全球最大GPU
北京時間3月28日凌晨,人工智慧計算公司英偉達(NVIDIA)在美國加州聖何塞召開GTC大會上,會上,英偉達CEO黃仁勛穿著熟悉的黑皮衣登場,又宣布了一系列針對人工智慧計算的新技術與新合作。網易智能將重點梳理如下:
推出RTX實時光線追蹤技術
RTX(ray-tracing)實時光線追蹤技術,能夠在運行專業設計及內容創作類應用程序的同時,提供實時光線追蹤。這項技術在不久前的遊戲開發者大會(GDC)上推出。
具體來說,傳媒娛樂領域的專業人士將能夠在準確的光影環境下瀏覽自己的作品,並與之交互,並在負責渲染時,可享受擁有10倍於單獨使用CPU的渲染速度。產品設計師和建築師能夠實時創建互動式、照片級寫實的大型3D模型的可視化。
英偉達CEO黃仁勛稱,自推出可編程著色器以來,NVIDIA RTX是計算機圖形領域近20年來取得的最顯著進展。
發布Quadro GV100 GPU
英偉達正式宣布推出第一款採用Volta架構的GPU Quadro GV100,搭載NVIDIA RTX技術。GV100具有32GB內存,且可通過並聯兩塊Quadro GPU擴展至64GB。GV100的性能比去年9月推出的DGX-1性能提高了10倍,售價達到驚人的39.9萬美元(約合250萬人民幣)。
說到性能,GV100可提供每秒7.4萬億次浮點運算的雙精度性能、每秒 14.8萬億次浮點運算的單精度性能、以及每秒 118.5萬億次浮點運算的深度學習性能。NVIDIA RTX內置的NVIDIA OptiX AI-denoiser可實現實時的AI去噪。
據悉,Quadro GV100將於4月通過工作站製造商及授權分銷合作夥伴進行供貨。
Tesla V100 GPU實現內存翻倍
與舊版相比,Tesla V100 GPU升級到了32GB 內存,是之前的兩倍,將內存受限的HPC 應用性能提升高達 50%,使其能夠處理大部分內存密集型深度學習和高性能計算工作負載。
英偉達介紹稱,Tesla V100 32GB GPU 目前可用於所有NVIDIA DGX 系統。此外,各大計算機製造商也宣布將於第二季度內推出各自全新的 Tesla V100 32GB 系統。
推出全新GPU互聯結構NVSwitch
英偉達在此次GTC大會上還推出了NVSwitch互聯結構,這個結構的帶寬比最好的 PCIe 交換機高出 5倍,NVSwitch 在 NVIDIA NVLink的基礎上實現了進一步擴展,讓系統設計人員能夠構建更高級的系統,靈活地連接任何基於 NVLink 的 GPU 的拓撲結構。
黃仁勛稱,NVSwitch將幫助開發者突破早前系統的限制並運行更大的數據集。它也為更大規模、更複雜的工作負載開啟了可能,包括神經網路並行訓練的建模。
推出NVIDIA DGX-2伺服器
英偉達在發布會上重磅推出了NVIDIA DGX-2,這是全球首款能夠提供每秒兩千萬億次浮點運算能力的單點伺服器。DGX-2 搭載 16 個 GPU,具有 300 台伺服器的深度學習處理能力,佔用 15 個數據中心機架空間,而體積則縮小60倍,能效提升18倍。
DGX-2 是首款採用 NVSwitch 的系統,其中採用的 16 個 GPU 均共享統一的內存空間。結合了最新的 NVIDIA 深度學習軟體套件,讓開發者能處理更大規模的數據集和更複雜的深度學習模型。
英偉達宣稱,DGX-2 能夠在不到兩天的時間內完成對 FAIRSeq(一種採用最新技術的神經網路機器翻譯模型的訓練,其性能相較於去年 9 月份推出的基於 Volta 架構的 DGX-1 提高了 10 倍。
推出新的TensorRT 4推理軟體
英偉達發布了TensorRT 4軟體,並且集成至谷歌的TensorFlow 1.7開發系統。開發者可利用Volta Tensor Core 技術將 NVIDIA 深度學習平台的推理吞吐量提高 8 倍(相比低延遲目標下的普通 GPU 執行),從而讓 GPU 在 TensorFlow 內的推理實現了最高性能。
TensorRT 4提供高度精確的 INT8 與 FP16網路執行,可用於快速優化、驗證及部署在超大規模數據中心、嵌入式與汽車 GPU 平台中經過訓練的神經網路。 與此同時,語音識別框架 Kaldi 針對 GPU 進行了優化。GPU 語音加速意味著消費者將獲得更加準確與實用的虛擬助手,並降低數據中心運營商的部署成本。
推出DRIVE Constellation自動駕駛模擬系統
據悉,DRIVE Constellation是一款基於兩種不同伺服器的計算平台。第一台伺服器運行 NVIDIA DRIVE Sim 軟體,用以模擬自動駕駛汽車的感測器,如攝像頭、激光雷達和雷達。第二台伺服器搭載了NVIDIA DRIVE Pegasus AI 汽車計算平台,可運行完整的自動駕駛汽車軟體堆棧,並能夠處理模擬數據,這些模擬數據如同來自路面行駛汽車上的感測器。
英偉達稱,DRIVE Constellation提供了一種能夠在數十億英里的行駛中進行測試和驗證的解決方案,藉助虛擬模擬,可進行數十億英里的自定義場景和極端情況進行測試,從而提高演算法的穩定性,加速實現自動駕駛汽車的量產部署。
與ARM達成合作,布局物聯網設備
英偉達在本次GTC上還宣布了與ARM的合作,英偉達深度學習加速器NVDLA架構將集成到ARM的 Project Trillium 平台中,以便於構建深度學習 IoT 晶元。此次合作將使物聯網晶元公司能夠輕鬆地將 AI 集成到它們的設計中。
NVDLA 是一個免費的開放式架構,它基於自主機器系統級晶元 NVIDIA Xavier設計,旨在推廣設計深度學習推理加速器的標準方法。NVDLA 的模塊化架構具有可擴展性和高度可配置性,專門為簡化集成和便攜性而設計……


※「閑話芯情」—半導體人自己的舞台
※高通與博通擬本周三舉行會談 討論1210億美元收購要約
TAG:SEMIChina |