當前位置:
首頁 > 科技 > 怎樣理解光纖衰減和損耗?

怎樣理解光纖衰減和損耗?

1 光纖衰減機制

當光從光纖的一端射入,從另一端射出時,光的強度會減弱。這意味著光信號通過光纖傳播後,光能量衰減了一部分。這說明光纖中有某些物質或因某種原因,阻擋光信號通過。這就是光纖的傳輸損耗。只有降低光纖損耗,才能使光信號暢通無阻。

在ZBLAN和二氧化硅光纖內的光衰減。

2 光纖損耗係數

為了衡量一根光纖損耗特性的好壞,在此引入損耗係數(或稱為衰減係數)的概念,即傳輸單位長度(1km)光纖所引起的光功率減小的分貝數,一般用α表示損耗係數,單位是dB/km。

光纖自動損耗測試儀

數學表達式:

式中:L為光纖長度,以km為單位;P1和P2分別為光纖的輸入和輸出光功率,以mW或μW為單位。

3 造成光纖衰減的主要因素

光纖衰減是阻礙數字信號遠距離傳輸的一個重要因素。光纖損耗的高低直接影響傳輸距離或中繼站間隔距離的遠近。

造成光纖衰減的主要因素有:本徵,彎曲,擠壓,雜質,不均勻和對接等。

本徵:是光纖的固有損耗,包括:瑞利散射,固有吸收等。

彎曲:光纖彎曲時部分光纖內的光會因散射而損失掉,造成損耗。

擠壓:光纖受到擠壓時產生微小的彎曲而造成的損耗。

雜質:光纖內雜質吸收和散射在光纖中傳播的光,造成的損失。

不均勻:光纖材料的折射率不均勻造成的損耗。

對接:光纖對接時產生的損耗,如:不同軸(單模光纖同軸度要求小於0.8μm),端面與軸心不垂直,端面不平,對接心徑不匹配和熔接質量差等。

4 光纖損耗的分類

光纖損耗大致可分為光纖具有的固有損耗以及光纖製成後由使用條件造成的附加損耗。具體細分如下:

光纖損耗可分為固有損耗和附加損耗。

固有損耗包括散射損耗、吸收損耗和因光纖結構不完善引起的損耗。

附加損耗則包括微彎損耗、彎曲損耗和接續損耗。

4.1 附加損耗

附加損耗是在光纖的鋪設過程中人為造成的。在實際應用中,不可避免地要將光纖一根接一根地接起來,光纖連接會產生損耗。光纖微小彎曲、擠壓、拉伸受力也會引起損耗。這些都是光纖使用條件引起的損耗。究其主要原因是在這些條件下,光纖纖芯中的傳輸模式發生了變化。附加損耗是可以盡量避免的。

附加損耗包括微彎損耗、彎曲損耗和接續損耗。

光纖的彎曲

光纖的彎曲有兩種形式:

曲率半徑比光纖的直徑大得多的彎曲,我們習慣稱為彎曲或宏彎;

光纖軸線產生微米級的彎曲,這種高頻彎曲習慣稱為微彎。

4.2 固有損耗

固有損耗中,散射損耗和吸收損耗是由光纖材料本身的特性決定的,在不同的工作波長下引起的固有損耗也不同。搞清楚產生損耗的機理,定量地分析各種因素引起的損耗的大小,對於研製低損耗光纖合理使用光纖有著極其重要的意義。

4.2.1 吸收損耗

製造光纖的材料能夠吸收光能。光纖材料中的粒子吸收光能以後,產生振動、發熱,而將能量散失掉,這樣就產生了吸收損耗。我們知道,物質是由原子、分子構成的,而原子又由原子核和核外電子組成,電子以一定的軌道圍繞原子核旋轉。這就像我們生活的地球以及金星、火星等行星都圍繞太陽旋轉一樣,每一個電子都具有一定的能量,處在某一軌道上,或者說每一軌道都有一個確定的能級。距原子核近的軌道能級較低,距原子核越遠的軌道能級越高。軌道之間的這種能級差別的大小就叫能級差。當電子從低能級向高能級躍遷時,就要吸收相應級別的能級差的能量。

在光纖中,當某一能級的電子受到與該能級差相對應的波長的光照射時,則位於低能級軌道上的電子將躍遷到能級高的軌道上。這一電子吸收了光能,就產生了光的吸收損耗。

製造光纖的基本材料二氧化硅(SiO2)本身就吸收光,一個叫紫外吸收,另外一個叫紅外吸收。目前光纖通信一般僅工作在0.8~1.6μm波長區,因此我們只討論這一工作區的損耗。

光纖材料會選擇性地吸收某些特定波長的光波,這也會造成衰減或信號損失。吸收光波的機制類似顏色顯現的機制。

紫外吸收損耗

紫外吸收損耗是由光纖中傳輸的光子流將光纖材料中的電子從低能級激發到高能級時,光子流中的能量將被電子吸收,從而引起的損耗。

紅外吸收損耗

紅外吸收損耗是由於光纖中傳播的光波與晶格相互作用時,一部分光波能量傳遞給晶格,使其振動加劇,從而引起的損耗

石英玻璃中電子躍遷產生的吸收峰在紫外區的0.1~0.2μm波長左右。隨著波長增大,其吸收作用逐漸減小,但影響區域很寬,直到1μm以上的波長。不過,紫外吸收對在紅外區工作的石英光纖的影響不大。例如,在0.6μm波長的可見光區,紫外吸收可達1dB/km,在0.8μm波長時降到0.2~0.3dB/km,而在1.2μm波長時,大約只有0.ldB/km。

石英光纖的紅外吸收損耗是由紅外區材料的分子振動產生的。在2μm以上波段有幾個振動吸收峰。

雜質吸收損耗

雜質吸收損耗指光纖中的有害雜質主要有過渡金屬離子,如鐵、鈷、鎳、銅、錳、鉻等和OH-等對光的吸收而產生的損耗。

由於受光纖中各種摻雜元素的影響,石英光纖在2μm以上的波段不可能出現低損耗窗口,在1.85μm波長的理論極限損耗為ldB/km。

通過研究,還發現石英玻璃中有一些"破壞分子"在搗亂,主要是一些有害過渡金屬雜質,如銅、鐵、鉻、錳等。這些"壞蛋"在光照射下,貪婪地吸收光能,亂蹦亂跳,造成了光能的損失。清除"搗亂分子",對製造光纖的材料進行格的化學提純,就可以大大降低損耗。

石英光纖中的另一個吸收源是氫氧根(OHˉ) 期的研究,人們發現氫氧根在光纖工作波段上有三個吸收峰,它們分別是0.95μm、1.24μm和1.38μm,其中1.38μm波長的吸收損耗最為嚴重,對光纖的影響也最大。在1.38μm波長,含量僅佔0.0001的氫氧根產生的吸收峰損耗就高達33dB/km。

這些氫氧根是從哪裡來的呢?氫氧根的來源很多,一是製造光纖的材料中有水分和氫氧化合物,這些氫氧化合物在原料提純過程中不易被清除掉,最後仍以氫氧根的形式殘留在光纖中;二是製造光纖的氫氧物中含有少量的水分;三是光纖的製造過程中因化學反應而生成了水;四是外界空氣的進入帶來了水蒸氣。然而,現在的製造工藝已經發展到了相當高的水平,氫氧根的含量已經降到了足夠低的程度,它對光纖的影響可以忽略不計了。

原子缺陷吸收損耗

通常在光纖的製造過程中,光纖材料受到某種熱激勵或光輻射時將會發生某個共價鍵斷裂而產生原子缺陷,此時晶格很容易在光場的作用下產生振動,從而吸收光能,引起損耗,其峰值吸收波長約為630nm左右。

4.2.2 散射損耗

在黑夜裡,用手電筒向空中照射,可以看到一束光柱。人們也曾看到過夜空中探照燈發出粗大光柱。

那麼,為什麼我們會看見這些光柱呢?這是因為有許多煙霧、灰塵等微小顆粒浮游於大氣之中,光照射在這些顆粒上,產生了散射,就射向了四面八方。這個現象是由瑞利最先發現的,所以人們把這種散射命名為"瑞利散射"。

因為光線的全反射,光線可以傳輸於光纖核心。粗糙、不規則的表面,甚至在分子層次,也會使光線往隨機方向反射,稱這現象為漫反射或光散射 。特徵通常是多種不同的反射角。

散射是怎樣產生的呢?原來組成物質的分子、原子、電子等微小粒子是以某些固有頻率進行振動的,並能釋放出波長與該振動頻率相應的光。粒子的振動頻率由粒子的大小來決定。粒子越大,振動頻率越低,釋放出的光的波長越長;粒子越小,振動頻率越高,釋放出的光的波長越短。這種振動頻率稱做粒子的固有振動頻率。但是這種振動並不是自行產生,它需要一定的能量。一旦粒子受到具有一定波長的光照射,而照射光的頻率與該粒子固有振動頻率相同,就會引起共振。粒子內的電子便以該振動頻率開始振動,結果是該粒子向四面八方散射出光,入射光的能量被吸收而轉化為粒子的能量,粒子又將能量重新以光能的形式射出去。因此,對於在外部觀察的人來說,看到的好像是光撞到粒子以後,向四面八方飛散出去了。

光纖內也有瑞利散射,由此而產生的光損耗就稱為瑞利散射損耗。鑒於目前的光纖製造工藝水平,可以說瑞利散射損耗是無法避免的。但是,由於瑞利散射損耗的大小與光波長的4次方成反比,所以光纖工作在長波長區時,瑞利散射損耗的影響可以大大減小。

4.2.3 因光纖結構不完善引起的損耗

光纖結構不完善,如由光纖中有氣泡、雜質,或者粗細不均勻,特別是芯-包層交界面不平滑等,光線傳到這些地方時,就會有一部分光散射到各個方向,造成損耗。這種損耗是可以想辦法克服的,那就是要改善光纖製造的工藝。

散射使光射向四面八方,其中有一部分散射光沿著與光纖傳播相反的方向反射回來,在光纖的入射端可接收到這部分散射光。光的散射使得一部分光能受到損失,這是人們所不希望的。但是,這種現象也可以為我們所利用,因為如果我們在發送端對接收到的這部分光的強弱進行分析,可以檢查出這根光纖的斷點、缺陷和損耗大小。這樣,通過人的聰明才智,就把壞事變成了好事.

光纖的損耗近年來,光纖通信在許多領域得到了廣泛的應用。實現光纖通信,一個重要的問題是儘可能地降低光纖的損耗。所謂損耗是指光纖每單位長度上的衰減,單位為dB/km。光纖損耗的高低直接影響傳輸距離或中繼站間隔距離的遠近,因此,了解並降低光纖的損耗對光纖通信有著重大的現實意義。

本文源自網路

溫馨提示:

求知若渴, 虛心若愚

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 架構師技術聯盟 的精彩文章:

架構師之路必備最全學習資源
分散式文件系統設計,該從哪些方面考慮?

TAG:架構師技術聯盟 |