當前位置:
首頁 > 科技 > GaN產業規模有望突破200億美元

GaN產業規模有望突破200億美元

來源:內容綜合自新電子和科技電眼,謝謝。

近年來,由於氮化鎵(GaN)在高頻下的較高功率輸出和較小的佔位面積,GaN已被RF工業大量採用。根據兩個主要應用:電信基礎設施和國防,推動整個氮化鎵射頻市場預計到2024年成長至20億美元,產業研究機構Yole Développement(Yole)的研究報告指出,過去十年,全球電信基礎設施投資保持穩定,在該市場中,更高頻率的趨勢為5G網路中頻率低於6GHz的PA中的RF GaN提供了一個最佳發展的動力。

自從20年前第一批商用產品出現以來,GaN已成為射頻功率應用中LDMOS和GaAs的重要競爭對手,並以更低的成本不斷提高性能和可靠性。第一個GaN-on-SiC和GaN-on-Si元件幾乎同時出現,但GaN-on-SiC在技術上已經變得更加成熟。GaN-on-SiC目前主導GaN射頻市場,已滲透到4G LTE無線基礎設施市場,預計將部署在5G 6GHz以下的RRH架構中。然而,與此同時,在經濟高效的LDMOS技術方面也取得了顯著進展,這可能會挑戰5G sub-6Ghz主動式天線和大規模MIMO部署中的GaN解決方案。

GaN市場整體規模再2018年約6.45億美元,無線通訊應用約3.04億美元、軍事約2.7億美元,航太應用3700萬美元為三大主要應用,2024年整體市場將成長至200.13億美元,年複合成長率達21%,無線通訊應用規模達7.52億美元,軍事應用為9.77億美元,值得注意的是RF Energy將從200萬美元成長至1.04億美元。

GaN產業規模有望突破200億美元

延伸閱讀:為什麼這麼多人看好氮化鎵

GaN屬於第三代高大禁帶寬度的半導體材料,和第一代的Si以及第二代的GaAs等前輩相比,其在特性上優勢突出。由於禁帶寬度大、導熱率高,GaN器件可在200℃以上的高溫下工作,能夠承載更高的能量密度,可靠性更高;較大禁帶寬度和絕緣破壞電場,使得器件導通電阻減少,有利與提升器件整體的能效;電子飽和速度快,以及較高的載流子遷移率,可讓器件高速地工作。

因此,利用GaN人們可以獲得具有更大帶寬、更高放大器增益、更高能效、尺寸更小的半導體器件,這與半導體行業一貫的「調性」是吻合的。

與GaN相比,實際上同為第三代半導體材料的SiC的應用研究起步更早,而之所以GaN近年來更為搶眼,主要的原因有兩點。

首先,GaN在降低成本方面顯示出了更強的潛力。目前主流的GaN技術廠商都在研發以Si為襯底的GaN的器件,以替代昂貴的SiC襯底。有分析預測到2019年GaN MOSFET的成本將與傳統的Si器件相當,屆時很可能出現一個市場拐點。並且該技術對於供應商來說是一個有吸引力的市場機會,它可以向它們的客戶提供目前半導體工藝材料可能無法企及的性能。

其次,由於GaN器件是個平面器件,與現有的Si半導體工藝兼容性強,這使其更容易與其他半導體器件集成。比如有廠商已經實現了驅動IC和GaN開關管的集成,進一步降低用戶的使用門檻。

正是基於GaN的上述特性,越來越多的人看好其發展的後勢。特別是在幾個關鍵市場中,GaN都表現出了相當的滲透力。

1.GaN在5G方面的應用

射頻氮化鎵技術是5G的絕配,基站功放使用氮化鎵。氮化鎵(GaN)、砷化鎵(GaAs)和磷化銦(InP)是射頻應用中常用的半導體材料。

與砷化鎵和磷化銦等高頻工藝相比,氮化鎵器件輸出的功率更大;與LDCMOS和碳化硅(SiC)等功率工藝相比,氮化鎵的頻率特性更好。氮化鎵器件的瞬時帶寬更高,這一點很重要,載波聚合技術的使用以及準備使用更高頻率的載波都是為了得到更大的帶寬。

與硅或者其他器件相比,氮化鎵速度更快。GaN可以實現更高的功率密度。對於既定功率水平,GaN具有體積小的優勢。有了更小的器件,就可以減小器件電容,從而使得較高帶寬系統的設計變得更加輕鬆。射頻電路中的一個關鍵組成是PA(Power Amplifier,功率放大器)。

從目前的應用上看,功率放大器主要由砷化鎵功率放大器和互補式金屬氧化物半導體功率放大器(CMOS PA)組成,其中又以GaAs PA為主流,但隨著5G的到來,砷化鎵器件將無法滿足在如此高的頻率下保持高集成度。

於是,GaN成為下一個熱點。氮化鎵作為一種寬禁帶半導體,可承受更高的工作電壓,意味著其功率密度及可工作溫度更高,因而具有高功率密度、低能耗、適合高頻率、支持寬頻寬等特點。

高通公司總裁Cristiano Amon 在2018 高通4G / 5G 峰會上表示:預計明年上半年和年底聖誕新年檔期將會是兩波5G 手機上市潮,首批商用5G 手機即將登場。據介紹,5G 技術預計將提供比目前的4G 網路快10 至100 倍的速度,達到每秒千兆的級別,同時能夠更為有效地降低延遲。

在5G的關鍵技術Massive MIMO應用中,基站收發信機上使用大數量(如32/64等)的陣列天線來實現了更大的無線數據流量和連接可靠性,這種架構需要相應的射頻收發單元陣列配套,因此射頻器件的數量將大為增加,器件的尺寸大小很關鍵,利用GaN的尺寸小、效率高和功率密度大的特點可實現高集化的解決方案,如模塊化射頻前端器件。

同時在5G毫米波應用上,GaN的高功率密度特性在實現相同覆蓋條件及用戶追蹤功能下,可有效減少收發通道數及整體方案的尺寸。實現性能成本的最優化組合。

GaN產業規模有望突破200億美元

除了基站射頻收發單元陳列中所需的射頻器件數量大為增加,基站密度和基站數量也會大為增加,因此相比3G、4G時代,5G時代的射頻器件將會以幾十倍、甚至上百倍的數量增加,因此成本的控制非常關鍵,而硅基氮化鎵在成本上具有巨大的優勢,隨著硅基氮化鎵技術的成熟,它能以最大的性價比優勢取得市場的突破。

2.GaN在快充市場的應用

隨著電子產品的屏幕越來越大,充電器的功率也隨之增大,尤其是對於大功率的快充充電器,使用傳統的功率開關無法改變充電器的現狀。

而GaN技術可以做到,因為它是目前全球最快的功率開關器件,並且可以在高速開關的情況下仍保持高效率水平,能夠應用於更小的元件,應用於充電器時可以有效縮小產品尺寸,比如使目前的典型45W適配器設計可以採用25W或更小的外形設計。

氮化鎵充電器可謂吸引了全球眼球,高速高頻高效讓大功率USB PD充電器不再是魁梧磚塊,小巧的體積一樣可以實現大功率輸出,比APPLE原廠30W充電器更小更輕便。

將內置氮化鎵充電器與傳統充電器並排放在一起看看,內置氮化鎵充電器輸出功率達到27W,APPLE USB-C充電器輸出功率30W,兩者功率相差不大,但體積上卻是完全不同的級別,內置氮化鎵充電器比蘋果充電器體積小40%。

據不完全統計,截止2018年10月23日,市面上支持USB PD快充的手機達到52款,幾乎所有主流的手機廠商都已將USB PD快充協議納入到了手機的充電配置,其中不乏蘋果、華為、小米、三星等一線大廠品牌。

從各大手機廠商和晶元原廠的布局來看,USB PD快充將成為目前手機、遊戲機、筆記本電腦等電子設備的首選充電方案,而USB Type-C也將成為下一個十年電子設備之間電力與數據傳輸的唯一介面,USB PD快充協議大一統的局面即將到來。

3.GaN在無人駕駛技術中的應用

激光雷達(LiDAR)使用鐳射脈衝快速形成三維圖像或為周圍環境製作電子地圖。氮化鎵場效應晶體管相較MOSFET器件而言,開關速度快十倍,使得LiDAR系統具備優越的解像度及更快速反應時間等優勢,由於可實現優越的開關轉換,因此可推動更高準確性。

這些性能推動全新及更廣闊的LiDAR應用領域的出現包括支持電玩應用的偵測實時動作、以手勢驅動指令的計算機及自動駕駛汽車等應用。

在大力研發和推進自動化汽車普及過程中,汽車廠商和科技企業都在尋覓感測器和攝像頭之間的最佳搭配組合,有效控制成本且可以大批量生產的前提下,最大限度的提升對周圍環境的感知和視覺能力。

氮化鎵的傳輸速度明顯更快,是目前激光雷達應用中硅元素的100 甚至1000 倍。這樣的速度意味著拍攝照片的速度,照片的銳度以及精準度。

讓我們描述道路前方的事物和變道的顏色預警。激光雷達能檢測前方路段是否有障礙物存在。通過激光雷達你能夠更全面地了解地形變化,一些你無法看到的地形。而單純的使用攝像頭或者雷達都無法勝任這項工作,因為兩者各自身上都有短板和不足。

4.GaN在國防工業中的應用

雷神宣布將開始在新生產的Guidance Enhanced Missile-TBM(GEM-T)攔截器中使用氮化鎵(GaN)計算機晶元,以取代目前在導彈發射器中使用的行波管(TWT)。雷神希望通過使用GaN晶元升級GEM-T的發射器,提高攔截器的可靠性和效率。此外,在新生產導彈中過渡到GaN意味著發射器不需要在攔截器的使用壽命期間更換。

雷神公司的GEM-T導彈是美國陸軍愛國者空中和導彈防禦系統的支柱,用於對付飛機和戰術彈道導彈和巡航導彈。近些年來,雷神一直致力於推動GaN功率和效率向更高極限發展。

新發射器具有與舊發射器相同的外形和功能,不需要額外的冷卻,並且可以在通電幾秒鐘內運行。這意味著採用新型GaN發射器的GEM-T將能夠繼續在最苛刻的條件下運行。

這種發射器技術也可能會在其他導彈上看到其他測試。陸軍表示有興趣用這些類型的發射器取代整個庫存,在GEM-T計劃中採用這些發射器能夠將修復成本降低36%。

目前,氮化鎵已經擁有了足夠廣闊的應用空間。作為第三代半導體新技術,也是全球各國爭相角逐的市場,並且市面上已經形成了多股氮化鎵代表勢力,其中第一梯隊有英諾賽科、納微、EPC等代表企業。其中英諾賽科是目前全球首家採用8英寸增強型硅氮化鎵外延與晶元大規模量產的企業,也是躋身氮化鎵產業第一梯隊的國產半導體企業代表。

然而,現在還有什麼是阻礙氮化鎵器件發展的不利因素呢?

兩個字:太貴!

回顧前兩代半導體的演進發展過程,任何一代半導體技術從實驗室走向市場,都面臨商用化的挑戰。目前氮化鎵也處於這一階段,成本將會隨著市場需求量加速、大規模生產、工藝製程革新等,而走向平民化,而最終的市場也將會取代傳統的硅基功率器件。8英寸硅基氮化鎵的商用化量產,可以大幅降低成本。第三代半導體的普及臨近,也讓我們有幸見證這一刻的到來。

*免責聲明:本文由作者原創。文章內容系作者個人觀點,半導體行業觀察轉載僅為了傳達一種不同的觀點,不代表半導體行業觀察對該觀點贊同或支持,如果有任何異議,歡迎聯繫半導體行業觀察。

今天是《半導體行業觀察》為您分享的第1989期內容,歡迎關注。

推薦閱讀

★雙輪驅動下的功率半導體市場將迎來井噴

★晶元製造的大挑戰

★台積電自研晶元?

GaN產業規模有望突破200億美元

2018半導體行業資料合集 長期有效!

半導體行業觀察

半導體第一垂直媒體

實時 專業 原創 深度

識別二維碼,回復下方關鍵詞,閱讀更多

華為|三星|存儲|射頻|晶元創業|台積電|RISC-V|ARM

回復 投稿,看《如何成為「半導體行業觀察」的一員 》

回復 搜索,還能輕鬆找到其他你感興趣的文章!

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 半導體行業觀察 的精彩文章:

Marvell會成為Arm伺服器晶元市場的贏家嗎?|半導體行業觀察
許寧生:攻克晶元等核心技術,「雙一流」大學應該做什麼?

TAG:半導體行業觀察 |