在 Mac OS X 裝不上 TensorFlow?看了這篇就會裝
雷鋒網按:本文原作者灰灰,本文原載於作者的GitHub。作者投稿,雷鋒網版權所有。
這個文檔說明了如何在 Mac OS X 上安裝 TensorFlow。
注意:從 1.2 版本開始,在 Mac OS X 上 TensorFlow 不再支持 GPU。
確定如何安裝 TensorFlow
你可以選擇一種方式安裝 TensorFlow,支持下面的幾種選擇:
virtualenv
"本地" pip
Docker
從源代碼安裝,更專業有單獨的文檔記錄
我們建議使用 virtualenv 安裝。virtualenv 是一個和其它 Python 項目開發隔離的虛擬 Python 環境,在同一台機器上不會干擾也不會被其它程序影響。virtualenv 安裝過程中,你不僅僅安裝了 TensorFlow 還有它的所有依賴包。(事實上這很簡單)要開始使用 TensorFlow,你需要 「啟動」 virtualenv 環境。總而言之,virtualenv 提供了一個安全可靠的 TensorFlow 安裝和運行機制。
本地 pip 安裝 TensorFlow 不經過任何容器或者虛擬環境系統直接裝到了系統上,由於本地 pip 安裝沒被關閉,pip 安裝會干擾或者影響系統上其它有 Python 依賴的安裝。而且,如果要通過本地 pip 安裝,你需要禁用系統完整性保護(SIP)。然而,如果你了解 SIP,pip 和 你的 Python 環境,本地 pip 安裝相對容易執行。
Docker可使 TensorFlow 的安裝完全脫離於機器上的其它已存在的包,Docker 容器包括 TensorFlow 和它的所有依賴。注意 Docker 鏡像可能很大(幾百 M)。如果你已將 TensorFlow 集成到使用了 Docker 的大型應用架構中可以選擇 Docker 安裝。
選擇 Anaconda,你可以使用 conda 創建一個虛擬環境,我們建議使用 pip install 命令而不是 coda install 命令安裝 TensorFlow。
注意:coda 包是社區而不是官方支持,也就是說,TensorFlow 團隊既不測試也不維護 conda 包,如果使用風險自己承擔。
使用 virtualenv 安裝
按照以下步驟安裝 TensorFlow:
打開終端(一個 shell),你將在這個終端中執行隨後的步驟
通過以下命令安裝 pip 和 virtualenv:
$ sudo easy_install pip
$ sudo pip install --upgrade virtuale
3. 執行以下任一命令創建虛擬環境:
$ virtualenv --system-site-packages targetDirectory # for Python 2.7
$ virtualenv --system-site-packages -p python3 targetDirectory # for Python 3.n
targetDirectory 因虛擬環境根路徑而異,我們的命令假使 targetDirectory 是 ~/tensorflow,但你可以選擇任一目錄。
4. 執行任一命令激活虛擬環境:
$ source ~/tensorflow/bin/activate # If using bash, sh, ksh, or zsh
$ source ~/tensorflow/bin/activate.csh # If using csh or tcs
上面的 source 命令應該將提示符改成了下面這樣:
(tensorFlow)$
5. 如果已經安裝了 pip 8.1 或者更新的版本,執行以下任一命令在激活的虛擬環境中安裝 TensorFlow 及其所有依賴:
$ pip install --upgrade tensorflow # for Python 2.7
$ pip3 install --upgrade tensorflow # for Python 3.n
如果前面的命令執行成功了,跳過步驟 6;如果失敗了,再執行步驟 6。
6. 可選,如果步驟 5 失敗了(一般是因為你使用了低於 8.1 版本的 pip),執行以下任一命令在激活的虛擬環境中安裝 TensorFlow:
$ pip install --upgrade tfBinaryURL # Python 2.7
$ pip3 install --upgrade tfBinaryURL # Python 3.n
tfBinaryURL 是 Tensorflow 包的 URL,準確的 tfBinaryURL 值因操作系統和 Python 版本而異,在 [這裡](#TensorFlow Python 包 URL) 找到和你系統相關的 tfBinaryURL 值。例如,你要在 Mac OS X 上安裝 Python 2.7 對應的 Tensorflow 版本,在虛擬環境中安裝 Tensorflow 就執行下面的命令:
$ pip3 install --upgrade
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl
如果安裝過程中遇到麻煩,參考常見安裝問題。
下一步
安裝完成後,驗證你的安裝是否工作正常。
注意,每打開一個新的 shell 使用 TensorFlow 都必須激活虛擬環境。如果當前虛擬環境沒有被激活(也就是提示符不是 tensorflow),執行以下任一命令:
$ source ~/tensorflow/bin/activate # bash, sh, ksh, or zsh
$ source ~/tensorflow/bin/activate.csh # csh or tcsh
你的提示符變成下面這樣說明 tensorflow 環境已經激活:
(tensorflow)$
當虛擬環境激活後,你可以在這個 shell 中運行 TensorFlow 程序。如果你不再使用 TensorFlow,可以通過下面命令退出環境:
(tensorflow)$ deactivate
提示符將會恢復到默認的(在 PS1 中定義的)。
卸載 TensorFlow
如果你想卸載 TensorFlow,簡單地移除你創建的目錄。例如:
$ rm -r ~/tensorflow
使用本地 pip 安裝
我們已經將 TensorFlow 二進位文件上傳到了 PyPI,因此你可以通過 pip 安裝, REQUIRED_PACKAGES section of setup.py文件列出了 pip 將要安裝或升級的包。
必備: Python
要安裝 TensorFlow,你的系統必須依據安裝了以下任一 Python 版本:
Python 2.7
Python 3.3+
如果你的系統還沒有安裝符合以上版本的 Python,現在安裝。
安裝 Python,你可能需要禁用系統完整性保護(SIP)來獲得從 Mac App Store 外安裝軟體的許可。
必備: pip
Pip安裝和管理 Python 寫的軟體包,如果你要使用本地 pip 安裝,系統上必須安裝下面的任一 pip 版本:
pip, for Python 2.7
pip3, for Python 3.n.
pip 或者 pip3 可能在你安裝 Python 的時候已經安裝了,執行以下任一命令確認系統上是否安裝了 pip 或 pip3:
$ pip -V # for Python 2.7
$ pip3 -V # for Python 3.n
我們強烈建議使用 pip 或者 pip3 為 8.1 或者更新的版本安裝 TensorFlow,如果沒有安裝,執行以下任一命令安裝或更新:
$ sudo easy_install --upgrade pip
$ sudo easy_install --upgrade six
安裝 TensorFlow
假設你的 Mac 上已經裝好了必備的程序,按照以下步驟執行:
執行以下任一命令安裝 TensorFlow:
$ pip install tensorflow # Python 2.7; CPU support
$ pip3 install tensorflow # Python 3.n; CPU support
如果上面的命令執行完成,現在可以驗證你的安裝了。
2. (可選的) 如果步驟 1 失敗了,執行下面的命令安裝最新版本 TensorFlow:
$ sudo pip install --upgrade tfBinaryURL # Python 2.7
$ sudo pip3 install --upgrade tfBinaryURL # Python 3.n
tfBinaryURL 是 Tensorflow 包的 URL,準確的 tfBinaryURL 值因操作系統和 Python 版本而異,在這裡找到和你系統相關的 tfBinaryURL 值。例如,你要在 Mac OS X 上安裝 Python 2.7 對應的 Tensorflow 版本,在虛擬環境中安裝 Tensorflow 就執行下面的命令:
$ sudo pip3 install --upgrade
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl
如果以上命令運行失敗,參考 安裝問題。
如果要卸載 TensorFlow,執行下面的命令:
$ pip uninstall tensorflow
$ pip3 uninstall tensorflow
使用 Docker 安裝
按照以下步驟使用 Docker 安裝 TensorFlow:
1. 按照 文檔在你的機器上安裝 Docker
2. 啟動任一個包含 TensorFlow 鏡像的 Docker 容器
本節剩下部分解釋如何啟動 Docker 容器。
要啟動包含 TensorFlow 鏡像的 Docker 容器,執行以下命令:
$ docker run -it -p hostPort:containerPort TensorFlowImage
where:
-p hostPort:containerPort 是可選的,如果你想從 shell 運行 TensorFlow 程序忽略這個選項。如果你想從 Jupyter notebook 運行 TensorFlow 程序,hostPort 和 containerPort 都設置為 8888。如果你想在鏡像中運行 TensorBoard,再添加一個-p參數,hostPort 和 containerPort 都設置為 6006。
TensorFlowImage 是需要的,它用於指定 Docker 容器,你必須指定接下來的任一一個:gcr.io/tensorflow/tensorflow: TensorFlow 二進位鏡像,gcr.io/tensorflow/tensorflow:latest-devel: TensorFlow 二進位鏡像加源碼。
gcr.io 是 Goole 的容器註冊表 (?),注意部分 TensorFlow 也可以從 dockerhub獲取。
例如,下面的命令可以在 Docker 容器中啟動一個 TensorFlow CPU 鏡像,然後你可以在鏡像的 shell 中運行 TensorFlow 程序:
$ docker run -it gcr.io/tensorflow/tensorflow bash
以下命令也可以在 Docker 容器中啟動一個 TensorFlow CPU 鏡像,然而,在這個 Docker 鏡像中,你可以在 Jupyter notebook 中運行 TensorFlow 程序:
$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
Docker 將會先下載 TensorFlow 鏡像然後啟動它。
下一步
現在可以驗證你的安裝了。
使用 Anaconda 安裝
Anaconda 安裝只是社區而非官方支持
按照以下步驟在 Anaconda 環境中安裝 TensorFlow:
1. 按照 Anaconda 下載站點說明下載安裝 Anaconda
2. 執行以下命令創建名為 tensorflow 的 conda 環境:
$ conda create -n tensorflow
3. 執行以下命令激活 conda 環境:
$ source activate tensorflow
(tensorflow)$ # Your prompt should change
4. 執行以下命令在你的 conda 環境中安裝 TensorFlow:
(tensorflow)$ pip install --ignore-installed --upgrade TF_PYTHON_URL
TF_PYTHON_URL 是 TensorFlow Python 包 的 URL,例如,以下命令是安裝 Python 2.7 CPU-only 版本的 TensorFlow:
(tensorflow)$ pip install --ignore-installed --upgrade
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl
驗證你的安裝
要驗證你的 TensorFlow 安裝,操作以下步驟:
保證你的環境可以運行 TensorFlow 程序
運行一個小的 TensorFlow 程序
準備你的環境
如果你使用本地 pip, virtualenv 或者 Anaconda 安裝,操作以下步驟:
打開一個終端
如果你使用 virtualenv 或 Anaconda 安裝,激活你的容器
如果你安裝了 TensorFlow 源碼,進到任何一個處了包含 TensorFlow 源碼的目錄
如果通過 Docker 安裝,啟動一個運行 bash 的 Docker 容器,例如:
$ docker run -it gcr.io/tensorflow/tensorflow bash
運行一個小的 TensorFlow 程序
在一個 shell 中執行 Python:
$ python
在 python 互動式 shell 中輸入以下小程序:
# Python
import tensorflow as tf hello = tf.constant("Hello, TensorFlow!") sess = tf.Sessionprint(sess.run(hello))
如果系統輸出以下內容,你可以開始寫 TensorFlow 程序了:
Hello, TensorFlow!
如果你不熟悉 TensorFlow,參考 Getting Started with TensorFlow。
如果系統輸出錯誤信息而不是歡迎語,參考 常見安裝問題。
常見安裝問題
我們依據 Stack Overflow 記錄 TensorFlow 安裝問題和相應的解決方法。下面的表格包括 Stack Overflow 常見的安裝問題回復鏈接,如果你遇到的錯誤信息或者其它安裝問題不在表格中,請在 Stack Overflow 上搜索。如果 Stack Overflow 上沒有你搜索的錯誤信息,提一個新問題並且打上 tensorflow 標籤。
Stack Overflow Link | Error Message |
---|---|
42006320 | ImportError: Traceback (most recent call last):File 「…/tensorflow/core/framework/graph_pb2.py」, line 6, in from google.protobuf import descriptor as _descriptorImportError: cannot import name 『descriptor』 |
33623453 | IOError: [Errno 2] No such file or directory: 『/tmp/pip-o6Tpui-build/setup.py』 |
35190574 | SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed |
42009190 | Installing collected packages: setuptools, protobuf, wheel, numpy, tensorflow Found existing installation: setuptools 1.1.6 Uninstalling setuptools-1.1.6: Exception: … [Errno 1] Operation not permitted: 『/tmp/pip-a1DXRT-uninstall/…/lib/python/_markerlib』 |
33622019 | ImportError: No module named copyreg |
37810228 | During a pip install operation, the system returns:OSError: [Errno 1] Operation not permitted |
33622842 | An import tensorflow statement triggers an error such as the following:Traceback (most recent call last): File 「」, line 1, in File 「/usr/local/lib/python2.7/site-packages/tensorflow/init.py」, line 4, in from tensorflow.python import * … File 「/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensorshapepb2.py」, line 22, in serialized_pb=_b(『 ,tensorflow/core/framework/tensor_shape.protox12 tensorflow」d x10TensorShapeProtox12- x03x64imx18x02 x03(x0bx32 .tensorflow.TensorShapeProto.Dimx1a! x03x44imx12x0c x04sizex18x01 x01(x03x12x0c x04namex18x02 x01( bx06proto3』) TypeError: __init got an unexpected keyword argument 『syntax』 |
42075397 | A pip install command triggers the following error:…You have not agreed to the Xcode license agreements, please run』xcodebuild -license』 (for user-level acceptance) or』sudo xcodebuild -license』 (for system-wide acceptance) from within aTerminal window to review and agree to the Xcode license agreements…. File 「numpy/core/setup.py」, line 653, in get_mathlib_info raise RuntimeError(「Broken toolchain: cannot link a simple C program」)RuntimeError: Broken toolchain: cannot link a simple C program |
TensorFlow Python 包 URL
一些安裝方法需要 TensorFlow Python 包的 URL,值與三個方面有關 (?):
操作系統
Python 版本
本節記錄了 Mac OS 安裝相關的值
Python 2.7
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl
Python 3.4, 3.5, or 3.6
https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py3-none-any.whl
Protobuf pip package 3.1
如果你沒有遇到 protobuf pip 包相關的問題可以跳過本節。
** 注意:** 如果你的 TensorFlow 運行很慢,可能是和 protobuf pip 包有關的問題。
TensorFlow pip 包依賴 protobuf pip 3.1 版本的包,從 PyPI 下載的 protobuf pip 包(在調用 pip install protobuf 時)是一個僅包含 Python 的庫,其中包含執行速度比 C++ 實現慢 10 ~ 50 倍的原始序列化 / 反序列化的 Python 實現。 Protobuf 還支持包含基於快速 C++ 的原語解析的 Python 包的二進位擴展,此擴展在標準的僅 Python 專用 pip 包中不可用,我們為 protobuf 創建了一個包含二進位擴展名的自定義二進位 pip 包。要安裝自定義二進位 protobuf pip 包,請調用以下命令之一:
for Python 2.7:
$ pip install --upgrade
https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.1.0-cp27-none-macosx_10_11_x86_64.whl
for Python 3.n:
$ pip3 install --upgrade
https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.1.0-cp35-none-macosx_10_11_x86_64.whl
安裝這些 protobuf 包將會覆蓋已安裝的包,注意二進位 pip 包已經支持大於 64M 的 protobufs,修復了如下報錯:
[libprotobuf ERROR google/protobuf/src/google/protobuf/io/coded_stream.cc:207]
A protocol message was rejected because it was too big (more than 67108864 bytes).
To increase the limit (or to disable these warnings), seeCodedInputStream::SetTotalBytesLimit in google/protobuf/io/coded_stream.h.
原文:https://www.tensorflow.org/install/install_mac


※RoboMaster 2017:機器人版的「王者農藥」,工程師們的競技時代
※一改現況,洛克希德·馬丁公司將發布微型太空望遠鏡
TAG:雷鋒網 |
※iPhone X哭了?MacBook卻笑了
※如何在mac上為Python安裝XGBoost!
※macOS Sierra:在Mac 上使用 Touch ID Use Touch ID on your Mac
※Surface Book 與 MacBook Pro 對比,你更喜歡哪個,為什麼?
※如何在 MacOS 上安裝 Elasticsearch
※MAC上基於VirtualEnv安裝TensorFlow
※無Touch Bar的蘋果MacBook Pro,再見!
※iPhone XR將上市 Mac與iPad發表會也不遠了?
※全系列 MacBook Pro 都有 Touch Bar 了
※Surface Studio跟iMac哪個更適合你?還有Studio2跟iMac pro
※MacBookPro配Vega後首個Benchmark來了!
※Mac 福音,Radeon ProRender插件Mac測試版來了!
※MacOS Install Docker
※誰更值得買?華為MateBook X Pro對抗MacBook Pro
※X-PICS | 麥迪告訴我下一步該這麼走—adidas TMAC Millennium 『』Sun Tzu」
※Youtuber Linus做了期「任何PC運行macOS」,這是什麼騷操作?
※破天荒!蘋果對MacBook Air大更新,還有全新iPad Pro和Mac mini
※Mac Pro首發Radeon Pro Vega II顯卡
※蘋果為 MacBook Air 加入 True Tone 原彩顯示技術,全系列 Pro 都擁有 Touch Bar 了
※如何在 Mac 上配置 Kubernetes